📚 课程介绍
本课程将带领你使用JavaScript语言学习机器学习,通过实践项目,让你掌握从数据预处理到模型训练的全过程,最终打造出你人生中的第一个AI项目。
📋 学习前提
1. JavaScript基础(网页交互编程语言) 2. HTML/CSS基础(网页结构和样式语言) 3. 基本的数学知识(了解线性代数和微积分有助于理解机器学习算法)
📖 课程目录
第1章 课程导学
1-1 《想要入门AI的同学都应该看一看》课程导学
第2章 机器学习与神经网络简介
2-1 机器学习简介
2-2 神经网络简介
2-3 神经网络的训练
第3章 Tensorflow.js 简介
3-1 Tensorflow.js 简介
3-2 安装 Tensoflow.js
3-3 为何要用 Tensor
第4章 线性回归
4-1 线性回归任务简介
4-2 准备、可视化训练数据
4-3 定义模型结构:单层单个神经元组成的神经网络
4-4 损失函数:均方误差
4-5 优化器:随机梯度下降
4-6 训练模型并可视化训练过程
4-7 进行预测
第5章 归一化
5-1 归一化任务简介
5-2 归一化训练数据
5-3 训练、预测、反归一化
第6章 逻辑回归
6-1 逻辑回归任务简介
6-2 加载二分类数据
6-3 定义模型结构:带有激活函数的单个神经元
6-4 损失函数:对数损失(log loss)
6-5 训练模型并可视化训练过程
6-6 进行预测
6-7 (选修)二分类数据集生成函数源码剖析
第7章 多层神经网络
7-1 多层神经网络任务简介
7-2 加载 XOR 数据集
7-3 定义模型结构:多层神经网络
7-4 训练模型并预测
第8章 多分类
8-1 任务简介、主要步骤、前置条件
8-2 加载iris数据集(训练集与验证集)
8-3 定义模型结构:带有softmax的多层神经网络
8-4 训练模型:交叉熵损失函数与准确度度量
8-5 多分类预测方法
8-6 (选修)IRIS数据集生成函数源码剖析
8-7 (选修)IRIS数据集生成函数源码剖析
第9章 欠拟合与过拟合
9-1 欠拟合与过拟合任务简介
9-2 加载带有噪音的二分类数据集
9-3 使用简单神经网络演示欠拟合
9-4 使用复杂神经网络演示过拟合
9-5 过拟合应对法:早停法、权重衰减、丢弃法
第10章 使用卷积神经网络(CNN)识别手写数字
10-1 使用卷积神经网络识别手写数字任务简介
10-2 加载 MNIST 数据集
10-3 定义模型结构:卷积神经网络
10-4 训练模型
10-5 进行预测
第11章 使用预训练模型进行图片分类
11-1 使用预训练模型进行图片分类任务简介
11-2 加载 MobileNet 模型
11-3 进行预测
第12章 基于迁移学习的图像分类器:商标识别
12-1 基于迁移学习的图像分类器:商标识别任务简介
12-2 加载商标训练数据并可视化
12-3 定义模型结构:截断模型+双层神经网络
12-4 迁移学习下的模型训练
12-5 迁移学习下的模型预测
第13章 使用预训练模型进行语音识别
13-1 使用预训练模型进行语音识别任务简介
13-2 加载预训练语音识别模型
13-3 进行语音识别
第14章 基于迁移学习的语音识别器:声控轮播图
14-1 基于迁移学习的语音识别器:声控轮播图
14-2 在浏览器中收集中文语音训练数据
14-3 语音识别迁移学习的训练和预测
14-4 语音训练数据的保存和加载
14-5 声控轮播图
第15章 Python 与 JavaScript 模型互转
15-1 Python 与 JavaScript 模型互转任务简介
15-2 安装 Tensorflow.js Converter
15-3 Python 与 JavaScript 模型互转
15-4 JavaScript 模型的互转:分片、量化、加速
第16章 课程总结
16-1 -回顾与总结
